Аннотация:
Предлагается системный подход к исследованию новой многопараметрической модели распространения пандемии COVID-19, который имеет конечной целью оптимизацию ее управляющих параметров. Подход состоит из двух основных частей:
1) адаптивно-компартментной модели распространения эпидемии, которая является обобщением классической модели SEIR и 2) модуля настройки параметров этой модели по эпидемиологическим данным методами интеллектуальной оптимизации. Данные для тестирования предлагаемого подхода на примере распространения пандемии в некоторых регионах РФ, брались на ежедневной основе из открытых источников в течении первых 130 дней эпидемии, начиная с марта 2020 г. Для этого была разработана и внедрена на локальном сервере так называемая «ферма данных» (автоматизированная система сбора, хранения и предварительной обработки данных из гетерогенных источников), которая в сочетании с методами оптимизации позволяет наиболее точно настраивать параметры нашей модели, превращая ее таким образом в интеллектуальную систему для поддержки принятия управленческих решений. Среди всех используемых параметров модели наиболее важными являются: скорость передачи инфекции, действия властей и реакция населения.
Ключевые слова:многопараметрическое моделирование, COVID-19, модель распространения эпидемии, многопараметрическая оптимизация, функция потерь.
Материал поступил в редакцию 23.04.2021, 21.05.2021, опубликован 24.05.2021