RUS  ENG
Полная версия
ЖУРНАЛЫ // Mendeleev Communications // Архив

Mendeleev Commun., 2021, том 31, выпуск 6, страницы 769–780 (Mi mendc1040)

Эта публикация цитируется в 11 статьях

Focus Article

Machine learning modelling of chemical reaction characteristics: yesterday, today, tomorrow

T. I. Madzhidova, A. Rakhimbekovaa, V. A. Afoninaa, T. R. Gimadievb, R. N. Mukhametgalieva, R. I. Nugmanova, I. I. Baskinc, A. Varnekbd

a Alexander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation
b Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan
c Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa, Israel
d Laboratoire de Modelisation et Simulations Moleculaires, Universite Louis Pasteur, Strasbourg, France


Аннотация: The synthesis of the desired chemical compound is the main task of synthetic organic chemistry. The predictions of reaction conditions and some important quantitative characteristics of chemical reactions as yield and reaction rate can substantially help in the development of optimal synthetic routes and assessment of synthesis cost. Theoretical assessment of these parameters can be performed with the help of modern machine-learning approaches, which use available experimental data to develop predictive models called quantitative or qualitative structure–reactivity relationship (QSRR) modelling. In the article, we review the state-of-the-art in the QSRR area and give our opinion on emerging trends in this field.

Ключевые слова: chemoinformatics, reaction informatics, chemical reaction, reaction yield, reaction rate, reaction conditions, QSAR, QSPR, QSRR.

Язык публикации: английский

DOI: 10.1016/j.mencom.2021.11.003



© МИАН, 2025