Аннотация:
Кооперативной игрой с ограниченной кооперацией называется тройка $(N,v,\Omega)$, где $N$ – конечное множество игроков, $\Omega\subset2^N$, $N\in\Omega$ – набор допустимых коалиций $v\colon\Omega\to\mathbb R$ – характеристическая функция. Из этого определения следует, что если $\Omega=2^N$, то игра $(N,v,\Omega)=(N,v)$ становится классической кооперативной игрой с трансферабельными полезностями (ТП). Рассматривается класс всех игр с ограниченной кооперацией $\mathcal G^r$ с произвольным универсальным множеством игроков. Пред n-ядро для игр из этого класса определяется так же, как и для классических ТП игр. Приводятся необходимые и достаточные условия на набор $\Omega$, обеспечивающие существование и одноточечность пред n-ядра. Даются аксиоматические характеризации пред n-ядер для игр с коалиционными структурами и двумя типами допустимых коалиций в них.
Ключевые слова:кооперативная игра, ограниченная кооперация, пред n-ядро, коалиционная структура.