Аннотация:
Предложенные ранее авторами бикомпактные разностные схемы для линейного одномерного уравнения переноса обобщены на многомерный случай с помощью покоординатного расщепления многомерной задачи. Шаблон схем по каждому из пространственных направлений минимален и состоит из двух точек. Схемы экономичны и решаются методом бегущего счета. Для гладких решений предложенные разностные схемы имеют четвертый порядок аппроксимации по пространственным переменным и первый или третий порядок аппроксимации по времени. Схемы для решения многомерных задач наследуют свойство монотонности одномерной бикомпактной схемы. Приведены численные примеры, которые показывают реальный порядок точности бикомпактных схем на гладких решениях и свойство монотонности схем на скачкообразных решениях.