Аннотация:
Предложен новый подход к полиномиальной аппроксимации (сглаживанию) высоких порядков, основанный на методе базисных элементов (МБЭ). МБЭ-многочлен степени $n$ определяется по четырем базисным элементам, заданным на трехточечной сетке: $x_0+\alpha<x_0<x_0+\beta$, $\alpha\beta<0$. Для вычисления коэффициентов полиномиальной модели 12-го порядка получены формулы, зависящие от длины интервала, непрерывных параметров $\alpha$, $\beta$ и значений $f^{(m)}(x_0+\nu)$, $\nu=\alpha, \beta, 0$, $m=\overline{0,3}$. Применение МБЭ-многочленов высоких степеней для кусочно-полиномиальной аппроксимации и сглаживания повышает устойчивость и точность вычислений при увеличении шага сетки, а также понижает вычислительную сложность алгоритмов.
Ключевые слова:многочлены высокой степени, кусочно-полиномиальная аппроксимация, метод наименьших квадратов, метод базисных элементов, сегментация кривых, сглаживание, эффективность алгоритмов.