RUS  ENG
Полная версия
ЖУРНАЛЫ // Математическое моделирование // Архив

Матем. моделирование, 2015, том 27, номер 12, страницы 88–95 (Mi mm3680)

Смешанная задача в одномерной теории перколяции для конечных систем

М. Г. Усатова, Р. А. Козлитин, В. Н. Удодов

Хакасский государственный университет им. Н. Ф. Катанова

Аннотация: Рассмотрена математическая модель одномерной смешанной задачи с использованием теории графов при произвольном радиусе протекания. Предложен новый алгоритм определения порога протекания смешанной задачи одномерной теории перколяции. Модель может быть использована для интерпретации результатов в квазиодномерных нанометровых системах.

Ключевые слова: теория перколяции, задача связей, задача узлов, смешанная задача, теория графов, кластер, критический индекс теплоемкости.

УДК: 531.19,519.24

Поступила в редакцию: 10.11.2014



Реферативные базы данных:


© МИАН, 2024