Аннотация:
Построена аппроксимация второго порядка на неструктурированной сетке из тетраэдров для решения уравнения переноса на основе метода коротких характеристик. Интерполирующий многочлен второго порядка строится по значениям в вершинах освещенной грани с использованием значений интегралов от искомой функции вдоль ребер в этой же грани. Значение в неосвещенной вершине получается интегрированием вдоль отрезка характеристики внутри тетраэдра от интерполированного значения на освещенной грани. Точность метода определяется точностью интерполяции и точностью интегрирования правой части вдоль отрезка характеристики. При кусочно-постоянной аппроксимации правой части метод имеет второй порядок при условии достаточной гладкости решения. На тестовых задачах показано, что в случае гладких решений метод имеет порядок сходимости чуть меньше второго, для недифференцируемых решений — меньше первого.
Ключевые слова:уравнение переноса, метод коротких характеристик, интерполяционно-характеристический метод, второй порядок аппроксимации.