Аннотация:
Рассматривается проблема численного решения краевых задач для многомерных уравнений типа конвекция-диффузия (КДУ). Данные уравнения используются для многих физических процессов в твёрдых телах, жидкостях и газах. Предложен новый подход к пространственной аппроксимации уравнений подобного типа. Подход базируется на интегральных преобразованиях одномерных дифференциальных операторов 2-го порядка. Для простоты анализа выбран линейный вариант КДУ. Для него построены экспоненциальные разностные схемы, разработаны алгоритмы их реализации, проведен краткий анализ устойчивости и сходимости. Численная апробация подхода выполнена на примере решения двумерной задачи о движении металлических частиц в водяном потоке при воздействии постоянного магнитного поля.