Аннотация:
Рассмотрена задача идентификации одного конкретного или нескольких возможных источников загрязнения, виновных в ухудшении качества воздушной среды в результате превышения норм предельно допустимых выбросов. В работе решается модельная задача с группой пространственно разделённых стационарных постоянно действующих промышленных источников. Представлены постановка задачи идентификации и метод её решения с использованием двух архитектур искусственных нейронных сетей: нейронных сетей Кохонена для квантования обучающих векторов (Kohonen’s networks for learning vector quantization) с фиксированной и адаптивной структурами и сети адаптивного резонанса (adaptive resonance theory network, ART) для аналоговых входных сигналов (АРТ-2). Метод состоит в кластеризации данных, которую обеспечивают алгоритмы самообучения (обучения без учителя). Даны расчётные соотношения и описаны алгоритмы работы нейронных сетей Кохонена и адаптивного резонанса на различных стадиях жизненного цикла. Проведён сравнительный анализ результатов решения модельной задачи, полученных с использованием каждой из сетей.
Ключевые слова:искусственная нейронная сеть, нейронная сеть Кохонена, квантование обучающих векторов, сеть адаптивного резонанса, самообучение, самоорганизация, кластеризация, кластерный анализ, идентификация источников выбросов в атмосферу.
Поступила в редакцию: 16.07.2015 Исправленный вариант: 12.01.2016