Аннотация:
Математическое моделирование нестационарного переноса лучистой энергии в кинетической постановке является весьма трудоемкой задачей. Это связано с нелинейностью решаемой системы и ее большой размерностью. В общем случае кинетическое уравнение переноса решается в 7-мерном фазовом пространстве, что требует больших вычислительных ресурсов. Поэтому исторически предпринимались попытки упростить исходную решаемую систему. Однако упрощающие предположения a priori могут ухудшать качество решения. Существенным шагом вперед стало квазидиффузионное приближение, предложенное В.Я. Гольдиным в 1964 г для переноса нейтронов и ставшее впоследствии одним из эффективных методов решения задач переноса нейтральных частиц. Метод квазидиффузии учитывает кинетические эффекты через коэффициенты, насчитываемые при периодическом решении кинетического уравнения. Существуют и другие подходы к упрощению исходной системы. В 2010 г М.Ю. Козмановым и Н.Г. Карлыхановым для одномерной геометрии была предложена другая модель, идеологически близкая к алгоритму квазидиффузии. В этой модели в уравнение диффузии вводятся коэффициенты, полученные при решении кинетического уравнения. Данный подход активно развивается в РФЯЦ-ВНИИТФ как в практическом, так и в теоретическом плане, и опыт использования позволяет надеяться на его широкое применение. В статье конспективно рассматриваются эти две модели и приводятся результаты расчетов двух тестовых задач в двумерной осесимметричной геометрии.