RUS  ENG
Полная версия
ЖУРНАЛЫ // Математическое моделирование // Архив

Матем. моделирование, 2022, том 34, номер 3, страницы 71–84 (Mi mm4360)

Моделирование интенсивных пучков заряженных частиц в протяженных электронно-оптических системах

А. Н. Козырев, В. М. Свешников

Институт вычислительной математики и математической геофизики СО РАН

Аннотация: Интенсивные пучки заряженных частиц служат рабочим элементом в электрофизических приборах широкого научного и практического приложений. Математическое моделирование интенсивных пучков приводит к решению самосогласованной нелинейной задачи, включающей в себя расчет электрических и магнитных полей, траекторий заряженных частиц и объемного заряда. Под протяженной понимается электронно-оптическая система, размер которой в направлении движения пучка намного больше поперечного размера. Применение традиционных вычислительных подходов к моделированию таких систем не давало удовлетворительных результатов. В настоящей работе предлагаются новые алгоритмы и технологии, направленные на повышение точности и снижение времени расчетов. Они основаны на методах декомпозиции расчетной области и состоят в следующем. Во-первых, протяженная расчетная область разбивается на две подобласти: в первой из них формируется интенсивный пучок, а во второй – происходит его доускорение и транспортировка. «Сшивка» решений проводится альтернирующим методом Шварца. Во-вторых, в каждой из данных подобластей строится адаптивная квазиструктурированная локально-модифицированная сетка, состоящая из структурированных подсеток. Предлагаемая квазиструктурированная сетка позволяет значительно снизить трудозатраты при расчете траекторий заряженных частиц. В-третьих, на эмиттере проводится выделение особенности путем введения приэмиттерной подобласти. В данной подобласти строится приближенное аналитическое решение, которое «сшивается» с численным решением в основной подобласти в итерационном процессе Бройдена. На примере модельной задачи о плоском диоде показана быстрая сходимость метода Бройдена. С помощью предлагаемых алгоритмов и технологий получены результаты моделирования сложной практической системы, которые дают хорошее совпадение с результатами натурных экспериментов.

Ключевые слова: математическое моделирование, интенсивные пучки, метод декомпозиции, квазиструктурированные сетки, выделение сингулярности.

Поступила в редакцию: 21.11.2021
Исправленный вариант: 21.11.2021
Принята в печать: 17.01.2022

DOI: 10.20948/mm-2022-03-04


 Англоязычная версия: Mathematical Models and Computer Simulations, 2022, 14:5, 799–807

Реферативные базы данных:


© МИАН, 2024