RUS  ENG
Полная версия
ЖУРНАЛЫ // Математическое моделирование // Архив

Матем. моделирование, 2022, том 34, номер 4, страницы 23–42 (Mi mm4365)

Сценарное моделирование коллапса запасов камчатского краба при экспертном управлении эксплуатацией

А. Ю. Переварюха

Санкт–Петербургский Федеральный исследовательский центр Российской академии наук

Аннотация: Для ряда актуальных ситуаций, когда стратегия управления воздействием определяется на основе решений экспертов и заинтересованных сторон, моделирование биосистем целесообразно проводить в виде набора сценарных вычислительных экспериментов. Сценарный подход позволяет сравнивать развитие для заданной формальными условиями ситуации, имитируя при этом логику экспертных решений и оценивая последствия для биоресурсов. B структуре сценарной модели необходимо включение условий для изменения характера протекания процесса — смены поведения системы и определение нового управляющего воздействия. Предлагается использовать специальную форму представления модельного времени с непрерывными интервалами и иерархией событий, которая соответствует рассматриваемой биологической проблематике. Модель co свойством мультистабильности формируется на основе уравнений формирования взрослых поколений. Эти уравнения изменяются в зависимости от стадий развития и условий воспроизводства крабов. Рассмотрена динамика ситуации, которая привела к коллапсу запасов камчатского краба при нерациональном промысле. Сценарий развивается из этапов с резкими апериодическими флуктуациями численности, которые отражаются переходным хаотическим режимом. Дискретная составляющая траектории модели c гибридным временем и c формализованной логикой экспертного управления описывает момент коллапса популяции как потерю свойства инвариантности аттрактором, который соприкасается с границей своей области притяжения.

Ключевые слова: сценарное моделирование, нелинейная динамика экосистем, коллапс.

Поступила в редакцию: 06.09.2021
Исправленный вариант: 06.09.2021
Принята в печать: 21.02.2022

DOI: 10.20948/mm-2022-04-02


 Англоязычная версия: Mathematical Models and Computer Simulations, 2022, 14:6, 889–899


© МИАН, 2024