Аннотация:
Рассматривается нестационарная задача об изгибе однородной ортотропной шарнирно опертой упругодиффузионной пластины Тимошенко, находящейся под действием распределенной по поверхности механической нагрузки. Исходная математическая постановка задачи включает в себя систему уравнений механодиффузии для сплошных сред, которая учитывает конечную скорость распространения диффузионных возмущений. Уравнения нестационарных упругодиффузионных колебаний пластины получены из уравнений для сплошной среды с помощью обобщенного принципа виртуальных перемещений с использованием гипотез теории Тимошенко. Решение ищется с помощью преобразования Лапласа и разложения в ряды Фурье. Оригиналы находятся аналитически, с помощью вычетов и таблиц операционного исчисления.
Ключевые слова:механодиффузия, нестационарные задачи, преобразование Лапласа, функции Грина, пластина Тимошенко.
Поступила в редакцию: 14.03.2023 Исправленный вариант: 11.05.2023 Принята в печать: 15.05.2023