Аннотация:
Получено точное решение задачи о преследовании в системе «хищник–жертва» для произвольного начального угла прицеливания $0<\alpha_0<180^\circ$ в форме уравнения кривой преследования. Получены точные неявные временные уравнения движения хищника и жертвы и расстояния между ними. Найдены длины кривых преследования для произвольных углов $\alpha_0$, в том числе кривой наикратчайшего преследования. Проведено реалистичное численное моделирование движения хищника и жертвы в пространстве и во времени. Определена область успешности преследования при ограниченном ресурсе движения хищника. Полученное общее решение задачи о преследовании с произвольным начальным углом прицеливания предоставляет широкие возможности для численного моделирования, что важно для обеспечения высокого уровня прикладной математической подготовки будущих исследователей, инженеров, педагогов.
Ключевые слова:задача о преследовании, математическое моделирование, численное моделирование.
Поступила в редакцию: 13.03.2023 Исправленный вариант: 23.05.2023 Принята в печать: 03.07.2023