RUS  ENG
Полная версия
ЖУРНАЛЫ // Математическое моделирование // Архив

Матем. моделирование, 2002, том 14, номер 10, страницы 116–126 (Mi mm545)

Эта публикация цитируется в 14 статьях

Математика модели Лефковича: репродуктивный потенциал и асимптотические циклы

Д. О. Логофетa, И. Н. Клочковаb

a Институт физики атмосферы им. А. М. Обухова РАН
b Московский государственный университет им. М. В. Ломоносова, механико-математический факультет

Аннотация: Изучается дискретная во времени модель динамики популяции с дискретной стадийной структурой, обобщающая классическую модель Лесли. Понятие репродуктивного потенциала определено через характеристический полином матрицы демографических параметров популяции (матрицы Лефковича) и доказана теорема о свойствах репродуктивного потенциала. В модели с сезонной зависимостью демографических параметров доказано отсутствие циклов годичной динамики и установлен внутрисезонный цикл, приводящий к равновесной структуре в годичном масштабе времени. Сезонная модель откалибрована по данным наблюдений за популяцией пашенного червя Aporrectodea caliginosa в условиях Подмосковья. Неопределенность в данных замещается допущениями, о справедливости которых можно судить по результатам модели, допускающим эмпирическую проверку.

Поступила в редакцию: 01.12.2000



Реферативные базы данных:


© МИАН, 2024