Аннотация:
Для численного интегрирования функций $y_i=f(x_i)$, $x\in[a,b]$, $i=\overline{0,n}$, заданных на неравномерной сетке и имеющих особенности, предложены и математически обоснованы новые классы неявных методов, основанных на вычислении интегралов$I_i^{i+1}=\int\limits_{x_i}^{x_{i+1}}f(x)dx$, $i=\overline{0,n}$ из алгебраических
систем линейных алгебраических уравнений с различными порядками аппроксимации.