Аннотация:
Приведены исследования (m,k)-метода, одностадийной комплексной схемы Розенброка, метода конечных суперэлементов и явного четырехстадийного метода Рунге — Кутты применительно к решению жестких систем обыкновенных дифференциальных уравнений. Анализ тестовых расчетов показал, что лучшим выбором для систем с большим числом жесткости является одностадийная комплексная схема Розенброка (CROS). Метод конечных суперэлементов (МКСЭ) является «точным» для решения линейных систем обыкновенных дифференциальных уравнений, лучшим вспомогательным методом для его реализации является (4,2)-метод. Построен и протестирован вариант метода конечных суперэлементов для решения нелинейных задач, оказавшийся непригодным для задач большой жесткости.
Ключевые слова:Приведены исследования (m,k)-метода, одностадийной комплексной схемы розенброка, метода конечных суперэлементов и явного четырехстадийного метода рунге — кутты применительно к решению жестких систем обыкновенных дифференциальных уравнений. анализ тестовых расчетов показал, что лучшим выбором для систем с большим числом жесткости является одностадийная комплексная схема розенброка (cros). метод конечных суперэлементов (мксэ) является «точным» для решения линейных систем обыкновенных дифференциальных уравнений, лучшим вспомогательным методом для его реализации является (4,2)-метод. построен и протестирован вариант метода конечных суперэлементов для решения нелинейных задач, оказавшийся непригодным для задач большой жесткости.