Аннотация:
Мы приводим полную систему аналитических инвариантов для развертываний нелинеаризуемых резонансных комплексно-аналитических диффеоморфизмов, а также ее геометрическую интерпретацию. Для построения этой системы мы вводим обобщение координат Фату с контролируемым асимптотическим поведением в окрестности неподвижных точек. Классические конструкции основаны на нахождении областей, в которых динамика развертываний топологически устойчива. Мы вводим понятие инфинитезимальной устойчивости, доставляющее координаты Фату, более точно отражающие аналитическую природу развертывания. С помощью этих нововведений нам удается проконтролировать область определения сопрягающего отображения и его разложение в степенной ряд.