Аннотация:
Рассматривается система из $n$ алгебраических уравнений $P_1=\dots=P_n=0$ в пространстве $(\mathbb C\setminus 0)^n$. Предполагается, что многогранники Ньютона этих уравнений достаточно общим образом расположены относительно друг друга. Пусть $\omega$ — любая рациональная $n$-форма, регулярная в $(\mathbb C\setminus 0)^n$ вне гиперповерхности $P_1\dotsb P_n=0$. Ранее мы анонсировали явную формулу для суммы вычетов Гротендика формы $\omega$ по всем корням системы уравнений. В настоящей статье эта формула доказывается.