Аннотация:
Результаты классификации экстремальных характеров двух модельных “больших” групп, бесконечной симметрической группы $S(\infty)$ и бесконечномерной унитарной группы $U(\infty)$, поразительно похожи. Кажется невозможным объяснить этот феномен с помощью какого-либо бесконечномерного обобщения двойственности Шура–Вейля. Мы предлагаем объяснение иного рода, не имеющее аналогов в классической теории представлений.
Мы исходим из комбинаторно-вероятностного подхода к характерам “больших” групп, впервые предложенного Вершиком и Керовым. При этом подходе пространство экстремальных характеров рассматривается как граница некоторого бесконечного графа. В случае групп $S(\infty)$ и $U(\infty)$ соответствующие графы суть граф Юнга и граф Гельфанда–Цетлина. Мы вводим связанный с ними новый объект, который мы называем букетом Юнга. Это частично упорядоченное множество с непрерывной градуировкой; мы определяем его границу и даем ее описание. Мы показываем, что граница представляет из себя конус над границей графа Юнга и в то же время она является вырождением границы графа Гельфанда–Цетлина.
Букет Юнга находит применение к построению бесконечномерных марковских процессов с детерминантными корреляционными функциями.