Аннотация:
Пусть $\mathcal{O}$ обозначает кольцо целых в $p$-адическом локальном поле. Напомним, что $\mathcal{O}$-модули – это формальные группы с действием $\mathcal{O}$, индуцирующем скалярное действие на алгебре Ли. В работе это понятие обобщается на конечные плоские групповые схемы. Показано, что все обычные свойства сохраняются. В частности, выполняется двойственность Картье с заменой мультипликативной группы на группу Любина–Тэйта. Мы также показываем, что поднятия над $\mathcal{O}$-разделенными степенями контролируются модулями Дьедонне или, лучше, комплексами. Для этих фактов приходится изобретать новые доказательства, так как классический рецепт вложения в абелевы многообразия непригоден.