Аннотация:
Мы получаем априорные оценки в $L^2$ для следующей задачи: $\Delta^2u=f$ в $\Omega$, $\frac{\partial u}{\partial n}=0$ на $\partial\Omega$, $-\frac{\partial}{\partial n}(\Delta u)+\beta\alpha u=0$ на $\partial\Omega$, где $n$ – вектор внешней нормали к $\partial\Omega$, $\alpha$ – положительная функция на $\partial\Omega$, $\beta$ – неотрицательный параметр. Наша оценка устойчива относительно перехода к сингулярному пределу $\beta\to\infty$; она не покрывается результатами Агмона, Дуглиса и Ниренберга. Мы применяем эту оценку к анализу предельного поведения при больших временах для уравнения $(\frac{\partial}{\partial t}+\Delta^2)u(x,t)=f(x,t)$ в асимптотически цилиндрической области $D$, с граничными условиями, аналогичными вышеприведенным, при условии, что коэффициент при $u$ стремится к $+\infty$ при $t\to\infty$.