RUS  ENG
Полная версия
ЖУРНАЛЫ // Moscow Mathematical Journal // Архив

Mosc. Math. J., 2016, том 16, номер 2, страницы 237–273 (Mi mmj599)

Эта публикация цитируется в 18 статьях

Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $\mathbb CP^5$

[Топология и геометрия канонического действия тора $T^4$ на комплексном многообразии Грассмана $G_{4,2}$ и комплексном проективном пространстве $\mathbb CP^5$]

Victor M. Buchstabera, Svjetlana Terzićb

a Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina Street 8, 119991 Moscow, Russia
b Faculty of Science, University of Montenegro, Dzordza Vasingtona bb, 81000 Podgorica, Montenegro

Аннотация: Мы рассматриваем каноническое действие компактного тора $T^4$ на комплексном многообразии Грассмана $G_{4,2}$ и доказываем, что пространство орбит $G_{4,2}/T^4$ гомеоморфно сфере $S^5$. Мы доказываем, что индуцированное отображение многообразия $G_{4,2}$ на сферу $S^5$ не является гладким, и описываем его гладкие и особые точки.
Мы также рассматривается действие тора $T^4$ на комплексном проективном пространстве $\mathbb CP^5$, индуцированное композицией второй симметрической степени стандартного представления тора $T^4$ и стандартного действия тора $T^6$ на $\mathbb CP^5$, и доказываем, что пространство орбит $\mathbb CP^5/T^4$ гомеоморфно джойну $\mathbb CP^2\ast S^2$.
Плюккеровское вложение $G_{4,2}\subset\mathbb CP^5$ эквивариантно относительно этих действий и индуцирует вложение $\mathbb CP^1\ast S^2\subset\mathbb CP^2\ast S^2$ относительно стандартного вложения $\mathbb CP^1\subset\mathbb CP^2$.
Все наши конструкции совместимы с инволюцией, задаваемой комплексным сопряжением, и приводят к соответствующим результатам для вещественного многообразии Грассмана $G_{4,2}(\mathbb R)$ и вещественного проективного пространства $\mathbb RP^5$ с действиями группы $Z^4_2$.
Мы доказываем, что пространство орбит $G_{4,2}(\mathbb R)/Z^4_2$ гомеоморфно сфере $S^4$ и пространство орбит $\mathbb RP^5/Z^4_2$ гомеоморфно джойну $\mathbb RP^2\ast S^2$.

MSC: 57S25, 57N65, 53D20, 53B20, 14M25, 52B11

Статья поступила: 29 апреля 2015 г.; исправленный вариант 21 октября 2015 г.

Язык публикации: английский

DOI: 10.17323/1609-4514-2016-16-2-237-273



Реферативные базы данных:
ArXiv: 1410.2482


© МИАН, 2024