RUS  ENG
Полная версия
ЖУРНАЛЫ // Moscow Mathematical Journal // Архив

Mosc. Math. J., 2017, том 17, номер 2, страницы 291–321 (Mi mmj638)

Эта публикация цитируется в 3 статьях

Deformations of the Hilbert scheme of points on a del Pezzo surface

[Деформации схемы Гильберта точек на поверхности Дель Пеццо]

Chunyi Li

School of Mathematics and Maxwell Institute, University of Edinburgh

Аннотация: Пусть $S$ – гладкая поверхность Дель Пеццо степени $d$ над $\mathbb C$, а $\mathrm{Hilb}^n$ – схема Гильберта, парметризующая ее нульмерные подсхемы длины $n$. Мы строим плоское семейство деформаций схемы $\mathrm{Hilb}^n$, которое можно проинтерпретировать как схему Гильберта некоммутативных деформаций поверхности $S$. Далее, мы показываем, что на каждой деформации $\mathrm{Hilb}^n$ имеется симплектическая в общей точке голоморфная пуассонова структура. Кроме того, общая деформация схемы $\mathrm{Hilb}^n$ имеет $(11-d)$-мерное пространство модулей, и каждый слой имеет тот вид, который мы строим.

MSC: 14D20, 16E35

Статья поступила: 29 июля 2014 г.; исправленный вариант 20 января 2016 г.

Язык публикации: английский

DOI: 10.17323/1609-4514-2017-17-2-291-321



Реферативные базы данных:


© МИАН, 2025