RUS  ENG
Полная версия
ЖУРНАЛЫ // Moscow Mathematical Journal // Архив

Mosc. Math. J., 2002, том 2, номер 4, страницы 753–767 (Mi mmj71)

Эта публикация цитируется в 13 статьях

Generalized Harish-Chandra modules

[Обобщенные модули Хариш-Чандры]

I. B. Penkova, V. V. Serganovab

a University of California, Riverside
b University of California, Berkeley

Аннотация: Пусть $\mathfrak g$ – конечномерная редуктивная алгебра Ли и $\mathfrak h$ – ее подалгебра Картана. Если $\mathfrak k$ – подалгебра $\mathfrak g$, мы называем $\mathfrak g$-модуль строгим $(\mathfrak g\mathfrak k)$-модулем, если $\mathfrak k$ совпадает с подалгеброй всех элементов в $\mathfrak g$, которые действуют локально компактно на $M$. Для промежуточной подалгебры $\mathfrak k$, т.е. такой, что $\mathfrak h\subset\mathfrak k\subset\mathfrak g$ мы строим неприводимые строгие $(\mathfrak g\mathfrak k)$-модули. Метод построения основан на теореме Бейлинсона–Бернштейна о локализации $\mathcal D$-модулей. Существование неприводимых строгих $(\mathfrak g\mathfrak k)$-модулей было известно только для очень специальных подалгебр $\mathfrak k$, например, когда $\mathfrak k$ – (редуктивная) подалгебра неподвижных точек инволюции на $\mathfrak g$. В этом последнем случае неприводимые строгие $(\mathfrak g\mathfrak k)$-модули суть модули Хариш-Чандры. Мы доказываем также необходимые и достаточные условия на $\mathfrak k$ для существования неприводимого строгого $(\mathfrak g\mathfrak k)$-модуля конечного типа, т.е. неприводимого строгого $(\mathfrak g\mathfrak k)$-модуля с конечными $\mathfrak k$-кратностями. В частности, в предположении, что промежуточная подалгебра $\mathfrak k$ редуктивна и $\mathfrak g$ не имеет простых компонент типов $B_n$ для $n>2$ и $F_4$, мы доказываем простой явный критерий для $\mathfrak k$ о существовании неприводимого строгого $(\mathfrak g\mathfrak k)$-модуля конечного типа. Из этого критерия следует, что если $\mathfrak g$ проста типов $A$ или $C$, то для любой промежуточной подалгебры $\mathfrak g$ существует неприводимый строгий $(\mathfrak g\mathfrak k)$-модуль конечного типа.

MSC: Primary 17B10; Secondary 22E46

Статья поступила: 24 марта 2002 г.

Язык публикации: английский

DOI: 10.17323/1609-4514-2002-2-4-753-767



Реферативные базы данных:


© МИАН, 2024