Эта публикация цитируется в
5 статьях
Periodic Schrödinger operators and Aharonov–Bohm Hamiltonians
B. Helffera,
T. Hoffmann-Ostenhofb,
N. S. Nadirashvilic a Paris-Sud University 11
b International Erwin Schrödinger Institute for Mathematical Physics
c University of Chicago
Аннотация:
Let
$H=-\Delta+V$ be a two-dimensional Schrödinger operator defined on a domain
$\Omega\subset\mathbb R^2$ with Dirichlet boundary conditions. Suppose that
$H$ and
$\Omega$ are that
$V(x_1,x_2)=V(-x_1,x_2)$ and that
$(x_1,x_2)\in\Omega$ implies
$(x_1+1,x_2)\in\Omega$ and
$(-x_1,x_2)\in\Omega$. We investigate the associated Floquet operator
$H_(q)$,
$0\leq 1$. In particular, we show that the lowest eigenvalue
$\lambda_q$ is simple for
$q\neq 1/2$ and strictly increasing in
$q$ for
$0<q<1/2$ and that the associated complex-valued eigenfunction
$u_q$ has empty zero set. For the Dirichlet realization of the Aharonov–Bohm Hamiltonian in an annulus-like domain with an axis of symmetry,
$$H_{A,V}=(i\partial_{x-1}+ A_1)^2+(i\partial x_2+A_2)^2+V$$
, we obtain similar results, where the parameter
$q$ is replaced by the
$\frac{1}{2\pi}$-flux through the hole, under the assumption that the magnetic field curl
$A$ vanishes identically.
Ключевые слова и фразы:
Schrödinger operator, magnetic field, eigenvalues.
MSC: 35B05 Статья поступила: 7 мая 2002 г.
Язык публикации: английский
DOI:
10.17323/1609-4514-2003-3-1-45-61