Аннотация:
В 1991 году Сёренсен выдвинул гипотезу относительно максимального количества точек на пересечении поверхности степени $d$ и невырожденной эрмитовой поверхности в $\mathbb P^3(\mathbb F_{q^2})$. Эдуку доказал эту гипотезу для случая $d=2$. В этой статье мы доказываем ее для случая $d=3$. Если при этом $q\ge 4$, мы находим также следующее по величине (после максимального) возможное число точек на пересечении кубической поверхности и невырожденной эрмитовой поверхности. Наконец, мы классифицируем все кубические поверхности с максимальным (а при $q\ge4$ — и следующим после максимального) количеством точек на пересечении с некоторой невырожденной эрмитовой поверхностью. Эта классификация опровергает одну гипотезу, выдвинутую Эдуку, Лином и Сином.