Эта публикация цитируется в
41 статьях
Hodge structure on the fundamental group and its application to $p$-adic integration
V. Vologodsky Institut des Hautes Études Scientifiques
Аннотация:
We study the unipotent completion
$\Pi^{\rm dR}_{\rm un}(x_0,x_1,X_K)$ of the de Rham fundamental groupoid of a smooth algebraic variety over a local non-Archimedean field
$K$ of characteristic 0. We show that the vector space
$\Pi^{\rm dR}_{\rm un}(x_0,x_1,X_K)$ carries a certain additional structure. That is a
$\mathbb Q^{\rm ur}_p$-space
$\Pi_{\rm un}(x_0,x_1,X_K)$ equipped with a
$\sigma$-semi-linear operator
$\phi$, a linear operator
$N$ satisfying the relation
$N\phi=p\phi N$, and a weight filtration
$W_\cdot$ together with a canonical isomorphism $\Pi^{\rm dR}_{\rm un}(x_0,x_1,X_K)\otimes_K \overline K\simeq\Pi_{\rm un}(x_0,x_1,X_K)\otimes_{\mathbb Q_{\rm p}}^{\rm ur}\overline K$. We prove that an analogue of the monodromy conjecture holds for
$\Pi_{\rm un}(x_0,x_1,X_K)$.
As an application, we show that the vector space
$\Pi^{\rm dR}_{\rm un}(x_0,x_1,X_K)$ possesses a distinguished element. In other words, given a vector bundle
$E$ on
$X_K$ together with a unipotent integrable connection, we have a canonical isomorphism
$E_{x_ 0}\simeq E_{x_1}$ between the fibres. This construction is a generalisation of Colmez's p-adic integration
$({\rm rk}E=2)$ and Coleman's
$p$-adic iterated integrals (
$X_K$ is a curve with good reduction).
In the second part, we prove that, for a smooth variety
$X_{K_0}$ over an unramified extension of
$\mathbb Q_p$ with good reduction and
$r\leq\frac{p-1}{2}$, there is a canonical isomorphism $\Pi^{\rm dR}_{\rm un}(x_0,x_1,X_K)\otimes B_{\rm dR}\simeq\Pi_{r}^{\rm et}(x_0,x_1,X_{\overline K_0})\otimes B_{\rm dR}$ compatible with the action of the Galois group (
$\Pi^{\rm dR}_{\rm r}(x_0,x_1,X_{K_0})$ stands for the level
$r$ quotient of
$\Pi^{\rm dR}_{\rm un}(x_0,x_1,X_K)$). In particular, this implies the crystalline conjecture for the fundamental group (for
$r\leq\frac{p-1}{2}$).
Ключевые слова и фразы:
Crystalline cohomology, Hodge structure, $p$-adic integration.
MSC: Primary
14D10,
11G25; Secondary
14D07 Статья поступила: 21 февраля 2002 г.
Язык публикации: английский
DOI:
10.17323/1609-4514-2003-3-1-205-247