Аннотация:
Эта работа — продолжение моей статьи в Moscow Math. J. 20 (2020), no. 4. В той статье было доказано существование спектральной меры стационарного векторнозначного гауссовского случайного поля, построена векторнозначная случайная спектральная мера, соответствующая этой спектральной мере, выписаны ее основные свойства и определен интеграл Винера – Ито. Здесь мы доказываем с помощью этих результатов многомерную версию формулы Ито, демонстрирующую связь между интегралами Винера – Ито и полиномами Вика (многомерными аналогами полиномов Эрмита). Мы также доказываем формулу, выражающую сдвиг случайной величины через интеграл Винера – Ито. Это позволяет записать некоторые нелинейные функционалы от стационарных векторнозначных гауссовских полей в форме, приводящей к новым интересным предельным теоремам.