RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Московского математического общества // Архив

Тр. ММО, 2014, том 75, выпуск 2, страницы 139–157 (Mi mmo561)

Comparison of the singular numbers of correct restrictions of elliptic differential operators

V. I. Burenkova, M. Otelbaevb

a Faculty of Natural Sciences, Peoples’ Friendship University of Russia, Moscow, Russia
b Faculty of Mechanics and Mathematics, L. N. Gumilyov Eurasian National University, Astana, Kazakhstan

Аннотация: The paper is dedicated to finding the asymptotics of singular numbers of a correct restriction of a uniformly elliptic differential operator of order $2l$ defined on a bounded domain in $\mathbb{R}^n$ with sufficiently smooth boundary, which is in general a non-selfadjoint operator. Conditions are established on a correct restriction, ensuring that its singular numbers $s_k$ are of order $k^{2l/n}$ as $k\to\infty$. As an application of this result certain estimates are obtained for the deviation upon domain perturbation of singular numbers of such correct restrictions.
References: 12 entries.

Ключевые слова и фразы: correct restrictions of operators, leading and non-leading operators, estimates and asymptotics for singular numbers, spectral stability estimates.

УДК: 517.956, 517.984

MSC: 35P15, 35P20, 35J40, 47A75

Поступила в редакцию: 02.02.2014

Язык публикации: английский


 Англоязычная версия: Transactions of the Moscow Mathematical Society, 2014, 75, 115–131

Реферативные базы данных:


© МИАН, 2024