Эта публикация цитируется в
10 статьях
Automorphism groups of affine varieties and a characterization of affine $n$-space
H. Kraft Universität Basel, Basel, Switzerland
Аннотация:
We show that the automorphism group of affine
$n$-space
$\mathbb{A}^n$ determines
$\mathbb{A}^n$
up to isomorphism: If
$X$ is a connected affine variety such that $\mathrm{Aut}(X)
\simeq \mathrm{Aut}(\mathbb{A}^n)$ as ind-groups, then
$X \simeq \mathbb{A}^n$ as varieties.
We also show that every torus appears as
$\mathrm{Aut}(X)$ for a suitable irreducible
affine variety
$X$, but that
$\mathrm{Aut}(X)$ cannot be isomorphic to a semisimple
group. In fact, if
$\mathrm{Aut}(X)$ is finite dimensional and if
$X \not\simeq \mathbb{A}^1$,
then the connected component
$\mathrm{Aut}(X)^{\circ}$ is a torus.
Concerning the structure of
$\mathrm{Aut}(\mathbb{A}^n)$ we prove that any homomorphism
$\mathrm{Aut}(\mathbb{A}^n) \to \mathcal{G}$ of ind-groups either factors through
$\mathrm{jac}\colon{\mathrm{Aut}(\mathbb{A}^n)} \to {\Bbbk^*}$ where
$\mathrm{jac}$ is the Jacobian determinant,
or it is a closed immersion. For $\mathrm{SAut}(\mathbb{A}^n):=\ker(\mathrm{jac})\subset \mathrm{Aut}(\mathbb{A}^n)$ we
show that every nontrivial homomorphism
$\mathrm{SAut}(\mathbb{A}^n) \to \mathcal{G}$ is
a closed immersion.
Finally, we prove that every non-trivial homomorphism $\phi\colon{\mathrm{SAut}(\mathbb{A}^n)}
\to\mathrm{SAut}(\mathbb{A}^n)$ is an automorphism, and that
$\phi$ is given by conjugation with
an element from
$\mathrm{Aut}(\mathbb{A}^n)$.
Ключевые слова и фразы:
automorphism groups of affine varieties, ind-groups, Lie algebras of
ind-groups, vector fields, affine $n$-spaces.
УДК:
512.745,
512.745.4,
512.714
MSC: 20G05,
20G99,
14L24,
14L30,
14L40,
14R10,
14R20,
17B40,
17B65,
17B66 Поступила в редакцию: 28.03.2017
Исправленный вариант: 08.05.2017
Язык публикации: английский