RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Московского математического общества // Архив

Тр. ММО, 2018, том 79, выпуск 1, страницы 1–95 (Mi mmo608)

Эта публикация цитируется в 45 статьях

Quantum $q$-Langlands correspondence

M. Aganagicab, E. Frenkela, A. Okounkovcde

a Department of Mathematics, University of California, Berkeley, USA
b Center for Theoretical Physics, University of California, Berkeley, USA
c IITP, Moscow, Russia
d Department of Mathematics, Columbia University, New York, USA
e Laboratory of Representation Theory and Mathematical Physics, Higher School of Economics, Moscow, Russia

Аннотация: We conjecture, and prove for all simply-laced Lie algebras, an identification between the spaces of $q$-deformed conformal blocks for the deformed $\mathcal{ W}$-algebra $\mathcal{ W}_{q,t}(\mathfrak{g})$ and quantum affine algebra of $\widehat{^L\mathfrak{g}}$, where $^L\mathfrak{g}$ is the Langlands dual Lie algebra to $\mathfrak{g}$. We argue that this identification may be viewed as a manifestation of a $q$-deformation of the quantum Langlands correspondence. Our proof relies on expressing the $q$-deformed conformal blocks for both algebras in terms of the quantum $\mathrm{K}$-theory of the Nakajima quiver varieties. The physical origin of the isomorphism between them lies in the $\mathrm{6d}$ little string theory. The quantum Langlands correspondence emerges in the limit in which the $\mathrm{6d}$ little string theory becomes the $\mathrm{6d}$ conformal field theory with $(2,0)$ supersymmetry.
References: 130 entries.

Ключевые слова и фразы: Landlands correspondence, $q$-conformal blocks.

УДК: 517.958:530.145

MSC: 22E57, 81T40

Поступила в редакцию: 15.04.2017
Исправленный вариант: 20.05.2018

Язык публикации: английский


 Англоязычная версия: Transactions of the Moscow Mathematical Society, 2018, 1–83

Реферативные базы данных:


© МИАН, 2024