RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Московского математического общества // Архив

Тр. ММО, 2020, том 81, выпуск 1, страницы 117–136 (Mi mmo637)

Эта публикация цитируется в 7 статьях

Arens–Michael envelopes of nilpotent Lie algebras, holomorphic functions of exponential type and homological epimorphisms

O. Yu. Aristov


Аннотация: Our aim is to give an explicit description of the Arens–Michael envelope for the universal enveloping algebra of a finite-dimensional nilpotent complex Lie algebra. It turns out that the Arens–Michael envelope belongs to a class of completions introduced by R. Goodman in 1970s. To find a precise form of this algebra we characterize preliminary the set of holomorphic functions of exponential type on a simply connected nilpotent complex Lie group. This approach leads to unexpected connections to Riemannian geometry and the theory of order and type for entire functions.
As a corollary, it is shown that the Arens–Michael envelope considered above is a homological epimorphism. So we get a positive answer to a question investigated earlier by Dosi and Pirkovskii. References: 36 entries.

Ключевые слова и фразы: nilpotent Lie algebra, Arens–Michael envelope, holomorphic function of exponential type, homological epimorphism, submultiplicative weight, length function.

УДК: 517.444

MSC: 17B30, 17B35, 22E30, 22E25, 32A38, 46M18, 46F05

Поступила в редакцию: 10.01.2019
Исправленный вариант: 08.09.2019

Язык публикации: английский


 Англоязычная версия: Transactions of the Moscow Mathematical Society, 2020, 81:1, 97–114

Реферативные базы данных:


© МИАН, 2024