RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Московского математического общества // Архив

Тр. ММО, 2021, том 82, выпуск 1, страницы 79–92 (Mi mmo647)

Lyapunov exponents for transfer operator cocycles of metastable maps: a quarantine approach

C. González-Tokmana, A. Quasb

a The University of Queensland, Brisbane
b University of Victoria

Аннотация: This works investigates the Lyapunov–Oseledets spectrum of transfer operator cocycles associated to one-dimensional random paired tent maps depending on a parameter $\varepsilon$, quantifying the strength of the leakage between two nearly invariant regions. We show that the system exhibits metastability, and identify the second Lyapunov exponent $\lambda_2^\varepsilon$ within an error of order $\varepsilon^2|\log \varepsilon|$. This approximation agrees with the naive prediction provided by a time-dependent two-state Markov chain. Furthermore, it is shown that $\lambda_1^\varepsilon=0$ and $\lambda_2^\varepsilon$ are simple, and the only exceptional Lyapunov exponents of magnitude greater than $-\log2+ O\Big(\log\log\frac 1\varepsilon\big/\log\frac 1\varepsilon\Big)$.

Ключевые слова и фразы: multiplicative ergodic theory, Lyapunov exponents, transfer operators, metastability.

УДК: 517.987.5

MSC: 37H15

Поступила в редакцию: 16.01.2021

Язык публикации: английский


 Англоязычная версия: Transactions of the Moscow Mathematical Society, 2021, 82, 65–76

Реферативные базы данных:


© МИАН, 2024