RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Московского математического общества // Архив

Тр. ММО, 2021, том 82, выпуск 1, страницы 157–174 (Mi mmo652)

Tiling billiards and Dynnikov's helicoid

O. Paris-Romaskevich

Aix-Marseille Université

Аннотация: Here are two problems. First, understand the dynamics of a tiling billiard in a cyclic quadrilateral periodic tiling. Second, describe the topology of connected components of plane sections of a centrally symmetric subsurface $S \subset \mathbb{T}^3$ of genus $3$. In this note we show that these two problems are related via a helicoidal construction proposed recently by Ivan Dynnikov. The second problem is a particular case of a classical question formulated by Sergei Novikov. The exploration of the relationship between a large class of tiling billiards (periodic locally foldable tiling billiards) and Novikov's problem in higher genus seems promising, as we show in the end of this note.

Ключевые слова и фразы: Novikov's problem, tiling billiards, billiards, translation surfaces.

УДК: 531.01, 517.938.5

MSC: 37E35, 37J60

Поступила в редакцию: 20.02.2021

Язык публикации: английский


 Англоязычная версия: Transactions of the Moscow Mathematical Society, 2021, 82, 133–147

Реферативные базы данных:


© МИАН, 2024