RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Московского математического общества // Архив

Тр. ММО, 2021, том 82, выпуск 1, страницы 217–226 (Mi mmo656)

Эта публикация цитируется в 2 статьях

On generalized Newton's aerodynamic problem

A. Plakhovab

a Institute for Information Transmission Problems, Moscow, Russia
b Department of Mathematics, University of Aveiro, Portugal

Аннотация: We consider the generalized Newton's least resistance problem for convex bodies: minimize the functional $\iint_\Omega (1 + |\nabla u(x,y)|^2)^{-1} dx dy$ in the class of concave functions $u\colon \Omega \to [0,M]$, where the domain $\Omega \subset \mathbb{R}^2$ is convex and bounded and $M > 0$. It has been known [1] that if $u$ solves the problem then $|\nabla u(x,y)| \ge 1$ at all regular points $(x,y)$ such that $u(x,y) < M$. We prove that if the upper level set $L = \{ (x,y)\colon u(x,y) = M \}$ has nonempty interior, then for almost all points of its boundary $(\overline{x}, \overline{y}) \in \partial L$ one has $\lim_{\substack{(x,y)\to(\overline{x}, \overline{y})\\\ u(x,y)<M}}|\nabla u(x,y)| = 1$. As a by-product, we obtain a result concerning local properties of convex surfaces near ridge points.

Ключевые слова и фразы: convex body, surface area measure, Newton's problem of minimal resistance.

УДК: 517.988.38

MSC: 52A15, 26B25, 49Q10

Поступила в редакцию: 28.02.2021

Язык публикации: английский


 Англоязычная версия: Transactions of the Moscow Mathematical Society, 2021, 82, 183–191

Реферативные базы данных:


© МИАН, 2024