Аннотация:
Для каждого ортогонального преобразования евклидова пространства существует ортонормированный базис, в котором матрица этого преобразования имеет блочно-диагональный вид с элементами $\pm1$ и блоками второго порядка — поворотами плоскости. Известно обобщение этой теоремы для лоренцевых преобразований псевдоевклидовых пространств сигнатуры $(1,n-1)$. Кроме инвариантных подпространств, возникающих в евклидовом случае, лоренцево преобразование может иметь инвариантную плоскость с лоренцевым поворотом или трехмерное циклическое подпространство с собственным числом $\pm1$ и изотропным собственным вектором. В этой статье мы представляем аналогичные результаты для изоморфизмов псевдоевклидовых пространств сигнатуры $(2,n-2)$ и $(3,n-3)$.