RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические труды // Архив

Матем. тр., 2010, том 13, номер 1, страницы 146–155 (Mi mt193)

Об одном обобщении понятия следа на алгебрах фон Неймана

Б. С. Закиров

Ташкентский институт инженеров железнодорожного транспорта, Ташкент, УЗБЕКИСТАН

Аннотация: Рассматриваются следы на алгебре фон Неймана $M$ со значениями в алгебре $L^0$ всех измеримых комплексных функций. Устанавливается, что каждый точный нормальный $L^0$-значный след на $M$ порождает $L^0$-значную метрику на алгебре измеримых операторов, присоединенных к $M$, при этом сходимость по этой метрике совпадает со сходимостью локально по мере.

Ключевые слова и фразы: алгебра фон Неймана, измеримый оператор, сходимость локально по мере, векторнозначный след.

УДК: 517.98

Статья поступила: 20.01.2009


 Англоязычная версия: Siberian Advances in Mathematics, 2011, 21:1, 73–79

Реферативные базы данных:


© МИАН, 2024