Аннотация:
На решетке $\mathbb Z^d$, $d\ge1$, рассматривается ветвящееся случайное блуждание с непрерывным временем, в котором частицы могут производить потомство только в начале координат. Предполагается, что основополагающее марковское случайное блуждание однородно и симметрично и что процесс начинается в момент $t=0$ с одной частицы, расположенной в начале координат, причем средняя численность порождаемого в нуле потомства такова, что соответствующее ветвящееся случайное блуждание является критическим. Исследовано асимптотическое поведение вероятностей невырождения такого процесса к моменту $t\to\infty$ и наличия в нуле хотя бы одной частицы в этот момент. Кроме того, получены асимптотические разложения для математического ожидания числа частиц в нуле и доказаны условные предельные теоремы ягломовского типа для количества частиц, находящихся в момент времени $t$ в начале координат и вне его.
Ключевые слова и фразы:каталитические ветвящиеся случайные блуждания, многомерные марковские однородные и симметричные случайные блуждания с непрерывным временем, ветвящиеся процессы Беллмана–Харриса с двумя типами частиц, теория восстановления, предельные теоремы.