Аннотация:
Мы рассматриваем стационарные уравнения Максвелла в ограниченной области с гладкой границей в $\mathbb{R}^3$ для функции $u$ при неоднородном условии $(u,v)_x=u_0$ на границе, где $v$ является заданным векторным полем, а $u_0$ — функцией на границе. Мы формулируем эту задачу в рамках краевых задач Римана–Гильберта для системы Моисила–Теодореско и доказываем, что она удовлетворяет условию Шапиро–Лопатинского тогда и только тогда, когда вектор $v$ ни в одной точке не становится касательным. Задача Римана–Гильберта для системы Моисила–Теодореско не обладает сопряженной относительно формулы Грина граничной задачей, удовлетворяющей условию Шапиро–Лопатинского. Мы развиваем построение формулы Грина для получения подходящей концепции сопряженной краевой задачи.
Ключевые слова и фразы:оператор Дирака, задача Римана–Гильберта, операторы Фредгольма.