ООО "Центр сертификационных исследований", г. Москва
Аннотация:
Пусть $p$ — простое число, $R=\mathrm{GR}(q^d,p^d)$ — кольцо Галуа мощности $q^d$ и характеристики $p^d$, где $q = p^r$, $S=\mathrm{GR}(q^{nd},p^d)$ — расширение степени $n$ кольца $R$ и $\check{S}$ — кольцо эндоморфизмов модуля $_RS$. Последовательность $v$ над $S$, удовлетворяющую закону рекурсии $$ \forall i\in\mathbb{N}_0 :\;\;\;v(i+m)= \\psi_{m-1}(v(i+m-1))+...+\psi_0(v(i)),\;\;\;\psi_0,...,\psi_{m-1}\in\check{S},$$ будем называть скрученной линейной рекуррентной последовательностью над$S$с характеристическим многочленом$\Psi(x) = x^m - \sum_{j=0}^{m-1}\psi_jx^j$. Максимально возможный период последовательности такого вида равен $\tau=(q^{mn}-1)p^{d-1}$. В работе предлагаются новые методы построения многочленов $\Psi(x)$, задающих законы рекурсии для скрученных линейных рекуррентных последовательностей максимального периода. Данные методы основаны на поиске в кольце $\check{S}[x]$ делителей классических многочленов Галуа над $R$ периода $\tau$.