Аннотация:
Проверочные матрицы линейных кодов с максимальным расстоянием ($\mathrm{MDS}$-матрицы) — важный элемент современных криптографических примитивов, обеспечивающий наилучшее рассеивание входных битов. В ряде работ изучались способы построения и описания $\mathrm{MDS}$-матриц для использования в низкоресурсной криптографии. Однако мало внимания уделялось влиянию приводимости предлагаемых $\mathrm{MDS}$-матриц, которая может позволить злоумышленнику использовать наличие нетривиальных инвариантных подпространств у соответствующих преобразований. В данной статье предлагаются некоторые методы построения $\mathrm{MDS}$-матриц с примитивными характеристическими многочленами, имеющие повышенную стойкость по отношению к атакам, основанным на инвариантных подпространствах.