Аннотация:
Пусть $c_n(\mathbf V)$ – последовательность роста коразмерностей для многообразия ассоциативных алгебр $\mathbf V$. Изучается функция сложности $\mathscr C(\mathbf V,z)=\sum_{n=0}^\infty c_n(\mathbf V)z^n/n!$. Это экспоненциальная производящая функция для последовательности коразмерностей. Ранее функции сложности использовались для изучения многообразий алгебр Ли. Цель заметки – начать систематическое изучение функций сложности в ассоциативном случае. Эти функции оказываются удобным инструментом для изучения роста многообразий над полем произвольной характеристики.
В настоящей заметке найдена формула Шрайера для функций сложности односторонних идеалов свободной ассоциативной алгебры. Она применена для изучения произведений $T$-идеалов. Получена точная формула функции сложности для многообразия $\mathbf U_c$ ассоциативных алгебр, порожденного алгеброй верхнетреугольных матриц. Доказано, что функция $c_n(\mathbf U_c)$ является квазиполиномом. Изучаются функции сложности для собственных тождеств. Результаты о функциях сложности применены для изучения асимптотики роста коразмерностей. Прослеживаются аналогии между функциями сложности многообразий и рядами Гильберта–Пуанкаре конечно порожденных алгебр.
Библиография: 20 названий.