Аннотация:
Рассматриваются сферические суммы Фурье $S_r(f,x)=\sum_{\|k\|\leqslant r}\widehat f(k)e^{ik\cdot x}$ периодической функции $f$ от $m$ переменных и интегральные сильные средние этих сумм $((\int_0^R |S_r(f,x)|^p \,dr)/R)^{1/p}$ для $p\geqslant1$. В работе установлен точный порядок роста при $R\to+\infty$ соответствующих операторов, т.е. порядок роста величин $\sup_{|f|\leqslant 1}((\int_0^R |S_r(f,0)|^p\, dr)/R)^{1/p}$. Оценки сверху и снизу различаются на коэффициенты, зависящие лишь от размерности $m$. Приводится достаточное условие на функцию, обеспечивающее равномерную сильную $p$-суммируемость ее ряда Фурье.
Библиография: 6 названий.