RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2015, том 98, выпуск 1, страницы 68–77 (Mi mzm10913)

Эта публикация цитируется в 1 статье

Статьи, опубликованные в английской версии журнала

On the Maximal Operators of Fejér Means with Respect to the Character System of the Group of 2-Adic Integers in Hardy Spaces

G. Gát, K. Nagy

College of Nyíregyháza, Nyíregyháza, Hungary

Аннотация: It was a question of Taibleson, open for a long time that the almost everywhere convergence of Fejér (or $(C,1)$) means of Fourier series of integrable functions with respect the character system of the group of $2$-adic integers. This question was answered by Gát in 1997. The aim of this paper is to investigate the maximal operator of the $\sup_n|\sigma_n|$. Among other things, we prove that this operator is bounded from the Hardy space $H_p$ to the Lebesgue space $L_p$ if and only if $1/2 < p < \infty$. The two-dimensional maximal operator is also discussed.

Ключевые слова: group of 2-adic integers, character system, Fejér mean, Fourier series, Hardy space, maximal operator.

Поступило: 27.02.2014

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2015, 98:1, 68–77

Реферативные базы данных:


© МИАН, 2024