Аннотация:
Рассматриваются многообразия ассоциативных алгебр над полем нулевой характеристики. Недавно А. Я. Белов доказал, что во всяком таком многообразии ряд Гильберта относительно свободной алгебры конечного ранга рационален. Между тем, в многообразии алгебр с нулевым умножением, многообразиях коммутативных алгебр и всех ассоциативных
алгебр справедливо и более сильное утверждение. А именно, для этих многообразий хорошо известны формулы, рационально выражающие ряд Гильберта алгебры свободного произведения алгебр через ряды Гильберта сомножителей. В статье приводится система контрпримеров, показывающая, что в любом другом многообразии аналогичной формулы не существует, даже если один из двух сомножителей – свободная алгебра. Однако, если ограничиться классом градуированных $\operatorname{PI}$-алгебр, порожденных своими
компонентами первой степени, то существует бесконечно много многообразий, для каждого из которых аналогичная формула имеет место.
Библиография: 3 названия.