RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2015, том 98, выпуск 5, страницы 813–819 (Mi mzm11025)

Статьи, опубликованные в английской версии журнала

Classification of Finite Commutative Rings with Planar, Toroidal, and Projective Line Graphs Associated with Jacobson Graphs

A. Parsapoura, K. Khashyarmanesha, M. Afkhamib, Kh. Ahmad Javaheria

a Department of Pure Mathematics, International Campus of Ferdowsi University of Mashhad, Mashhad, Iran
b Department of Mathematics, University of Neyshabur, Neyshabur, Iran

Аннотация: Let $R$ be a commutative ring with nonzero identity and $J(R)$ be the Jacobson radical of $R$. The Jacobson graph of $R$, denoted by $\mathfrak{J}_R$, is a graph with vertex-set $ R \setminus J(R)$, such that two distinct vertices $a$ and $b$ in $R\setminus J(R)$ are adjacent if and only if $1- ab$ is not a unit of $R$. Also, the line graph of the Jacobson graph is denoted by $L(\mathfrak{J}_R)$. In this paper, we characterize all finite commutative rings $R$ such that the graphs $L(\mathfrak{J}_R)$ are planar, toroidal or projective.

Ключевые слова: Jacobson graph, line graph, planar graph, projective graph, toroidal graph.

Поступило: 29.07.2013
Исправленный вариант: 17.06.2015

DOI: 10.1134/S0001434615110103


 Англоязычная версия: Mathematical Notes, 2015, 98:5, 813–819

Реферативные базы данных:


© МИАН, 2024