Аннотация:
Статья посвящена изучению свойств одного класса
пространственных отображений, более общих, чем отображения
с ограниченным искажением. Показано, что локально равномерный предел
последовательности отображений $f\mspace{2mu}{:}
D\to {\mathbb R}^n$ области
$D\subset{\mathbb R}^n$, $n\geqslant 2$,
удовлетворяющих одному неравенству относительно $p$-модуля
семейств кривых, является нульмерным. Указанное утверждение обобщает
известную теорему об открытости и дискретности равномерного предела
последовательности отображений с ограниченным искажением.
Библиография: 26 названий.
Ключевые слова:дискретные отображения, отображения с ограниченным искажением.