RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2018, том 103, выпуск 2, страницы 251–258 (Mi mzm11183)

Эта публикация цитируется в 2 статьях

Статьи, опубликованные в английской версии журнала

Real-Imaginary Conjugacy Classes and Real-Imaginary Irreducible Characters in Finite Groups

S. M. Robati

Imam Khomeini International University, Qazvin, Iran

Аннотация: Let $G$ be a finite group. A character $\chi$ of $G$ is said to be real-imaginary if its values are real or purely imaginary. A conjugacy class $C$ of $a$ in $G$ is real-imaginary if and only if $\chi(a)$ is real or purely imaginary for all irreducible characters $\chi$ of $G$. A finite group $G$ is called real-imaginary if all of its irreducible characters are real-imaginary. In this paper, we describe real-imaginary conjugacy classes and irreducible characters and study some results related to the real-imaginary groups. Moreover, we investigate some connections between the structure of group $G$ and both the set of all the real-imaginary irreducible characters of $G$ and the set of all the real-imaginary conjugacy classes of $G$.

Ключевые слова: conjugacy classes, irreducible characters, real group.

Поступило: 18.03.2016
Исправленный вариант: 01.01.2017

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2018, 103:2, 251–258

Реферативные базы данных:


© МИАН, 2024