RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2016, том 99, выпуск 5, страницы 636–642 (Mi mzm11227)

Эта публикация цитируется в 8 статьях

Статьи, опубликованные в английской версии журнала

Existence of the Stationary Solution of a Rayleigh-Type Equation

D.I. Borisovabc, R. Gaydukovd

a Akhmulla Bashkir State Pedagogical University, Ufa, Russia
b University of Hradec Králové, Hradec Králové, Czech Republic
c Institute of Mathematics with Computer Center, Ufa Scientific Center, Russian Academy of Sciences, Ufa, Russia
d National Research University Higher School of Economics, Moscow, Russia

Аннотация: A fluid flow along a semi-infinite plate with small periodic irregularities on the surface is considered for large Reynolds numbers. The boundary layer has a double-deck structure: a thin boundary layer (“lower deck”) and a classical Prandtl boundary layer (“upper deck”). The aim of this paper is to prove the existence and uniqueness of the stationary solution of a Rayleigh-type equation, which describes oscillations of the vertical velocity component in the classical boundary layer.

Ключевые слова: double-deck structure, boundary-layer theory, fluid mechanics, Navier–Stokes equations, Rayleigh-type equation, eigenvalue problem.

Поступило: 23.03.2016

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2016, 99:5, 636–642

Реферативные базы данных:


© МИАН, 2024